Tenure-track Researcher and Co-head of the DCB lab
CURRENT POSITIONS
Tenure-track Asst Prof (“RTD-B”), Dept. of Informatics, Systems and Communications (DISCo), Univ. of Milan-Bicocca. https://en.unimib.it/alex-graudenzi
Co-head of the Data and Computational Biology Lab, Univ. of Milan-Bicocca
Director of the Lake Como School on Cancer Evolution (CSCE).https://csce2023.lakecomoschool.org/
Member of the B4 Bicocca Bioinformatics, Biostatistics and Bioimaging Centre, Milan, Italy
Fellow of the Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR) (on leave)
TRACK RECORD (update Feb 24)
78 indexed publications (Scopus), 45 of which as first, last or corresponding author
Invited speaker at 6 international conferences/seminars
Peer-reviewed contributions at 15+ international conferences
Member of the program and organizing committees of 25+ international conferences (1 as chair).
Member of the editorial board of 3 international journals: Cancer Informatics, Frontiers in Genetics (Computational Genomics) and Frontiers in Applied Mathematics and Statistics (Mathematical Biology)
Visiting scientist at New York University (US), New York Genome Center (US), University of Toronto (Canada), Catalan Institute of Oncology (Spain), Universidade NOVA de Lisboa (Portugal), Weill Cornell Medicine (US).
Supervisor of 5 (current or past) PhD students in Computer Science and 3 PostDoc.
(MAIN) RESEARCH AREAS
Computational methods for cancer and viral evolution
Data science for health and medicine
Multiscale modeling and simulation of biological systems
Bioinformatics methods for multi-omics (single-cell) data analysis and integration
Explainable AI and deep learning
ACTIVE PROJECTS
2021 – 2025: AIRC Investigator grant (IG): “ANAKIN” Advanced Nanotechnology to Assist Keeping the tumor microenvironment Involved in cancer Neutralization (PI: Miriam Colombo – Univ. of Milan-Bicocca). Role: collaborator (0.5 man/year 2024-2025).
2019 – 2024: My First AIRC Grant: “Integrating pharmacogenomic and pharmacometabolomic data towards personalized opioid therapies for cancer pain” (PI: Francesca Colombo – ITB-CNR). Role: collaborator.
2019 – 2022: Call HUB Resarch and Innovation, Regione Lombardia, POR FESR 2014-2020 project “INTERSLA” Innovation, new technological models and networks to treat ALS (PI: Giuseppe Lauria Pinter – IRCSS Istituto Neurologico “Carlo Besta”). Role: co-responsible of WP4: Bioinformatics techniques for the analysis and integration of clinical big data (1140 hours).
2018 – 2023: CRUK/AIRC/AECC Accelerator Award “SCCEIC” Single-cell cancer evolution in the clinic (PI: Giovanni Tonon – IRCCS Ospedale San Raffaele.). Role: co-responsible of Programme 3: Bioinformatics analysis, single-cell data integration and evolutionary methods.
Fontana, D., Crespiatico, I., …, Graudenzi, A., Mologni, L., Ramazzotti, D. (2023) Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients. NATURE COMMUNICATIONS 14, art. no. 5982, https://doi.org/10.1038/s41467-023-41670-3
Patruno L, Milite S, Bergamin R, …, Graudenzi, A., Caravagna, G. (2023) A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing. PLOS COMPUTATIONAL BIOLOGY 19(11): e1011557. https://doi.org/10.1371/journal.pcbi.1011557
Craighero, F., Angaroni, F., Stella, F., Damiani, C., Antoniotti, M., Graudenzi, A. (2023) Unity is strength: Improving the detection of adversarial examples with ensemble approaches. NEUROCOMPUTING Volume 554, 14 October 2023, 126576. https://doi.org/10.1016/j.neucom.2023.126576
Ramazzotti, D., Angaroni, F., Maspero, D., Ascolani, G., Castiglioni, I., Piazza, R., Antoniotti, M., Graudenzi, A. (2022) Variant calling from scRNA-seq data allows the assessment of cellular identity in patient-derived cell lines. NATURE COMMUNICATIONS, 13 (1), art. no. 2718. doi: 10.1038/s41467-022-30230-w
Angaroni, F., Guidi, A., Ascolani, G., d’Onofrio, A., Antoniotti, M., Graudenzi, A. (2022) J-SPACE: a Julia package for the simulation of spatial models of cancer evolution and of sequencing experiments. BMC BIOINFORMATICS, 23 (1), art. no. 269. doi: 10.1186/s12859-022-04779-8
Mella, L., Lal, A., Angaroni, F., Maspero, D., Piazza, R., Sidow, A., Antoniotti, M., Graudenzi, A., Ramazzotti, D. (2022) SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples. STAR PROTOCOLS, 3 (3), art. no. 101513. doi: 10.1016/j.xpro.2022.101513
Ramazzotti, D., Maspero, D., Angaroni, F., Spinelli, S., Antoniotti, M., Piazza, R., Graudenzi, A. (2022) Early detection and improved genomic surveillance of SARS-CoV-2 variants from deep sequencing data. ISCIENCE, 25 (6), art. no. 104487. doi: 10.1016/j.isci.2022.104487
Angaroni F, Chen K, Damiani C, Caravagna G, Graudenzi A, Ramazzotti D (2022). PMCE: efficient inference of expressive models of cancer evolution with high prognostic power. BIOINFORMATICS, vol. 38, p. 754-762, ISSN: 1367-4803, doi: 10.1093/bioinformatics/btab717
Ramazzotti, Daniele, Angaroni, Fabrizio, Maspero, Davide, Ascolani, Gianluca, Castiglioni, Isabella, Piazza, Rocco, Antoniotti, Marco, Graudenzi, Alex (2022). LACE: Inference of cancer evolution models from longitudinal single-cell sequencing data. JOURNAL OF COMPUTATIONAL SCIENCE, vol. 58, 101523, ISSN: 1877-7503, doi: 10.1016/j.jocs.2021.101523
Graudenzi A., Maspero D., Angaroni F., Piazza R., Ramazzotti D. (2021). Mutational signatures and heterogeneous host response revealed via large-scale characterization of SARS-CoV-2 genomic diversity. ISCIENCE, vol. 24, 102116, ISSN: 2589-0042, doi: 10.1016/j.isci.2021.102116
Patruno, L, Maspero, D, Craighero, F, Angaroni, F, Antoniotti, M, Graudenzi, A (2021). A review of computational strategies for denoising and imputation of single-cell transcriptomic data. BRIEFINGS IN BIOINFORMATICS, vol. 22, bbaa222, ISSN: 1467-5463, doi: 10.1093/bib/bbaa222
Ramazzotti. , Daniele, Angaroni, Fabrizio, Maspero, Davide, Gambacorti-Passerini, Carlo, Antoniotti, Marco, Graudenzi, Alex, Piazza, Rocco (2021). VERSO: a comprehensive framework for the inference of robust phylogenies and the quantification of intra-host genomic diversity of viral samples. PATTERNS, vol. 2, 100212, ISSN: 2666-3899, doi: 10.1016/j.patter.2021.100212
Damiani, C, Maspero, D, Di Filippo, M, Colombo, R, Pescini, D, Graudenzi, A, Westerhoff HV, Alberghina, L, Vanoni, M, Mauri, G (2019). Integration of single-cell RNA-seq data into population models to characterize cancer metabolism. PLOS COMPUTATIONAL BIOLOGY, vol. 15, e1006733, ISSN: 1553-7358, doi: 10.1371/journal.pcbi.1006733
Graudenzi, A, Maspero,D, Di Filippo,M, Gnugnoli,M, Isella,C, Mauri,G, Medico,E, Antoniotti,M, Damiani,C (2018). Integration of transcriptomic data and metabolic networks in cancer samples reveals highly significant prognostic power. JOURNAL OF BIOMEDICAL INFORMATICS, vol. 87, p. 37-49, ISSN: 1532-0464, doi: 10.1016/j.jbi.2018.09.010
Caravagna, G, GRAUDENZI, ALEX, Ramazzotti, D, Sanz Pamplona, R, De Sano, L, MAURI, GIANCARLO, Moreno, V, ANTONIOTTI, MARCO, Mishra, B. (2016). Algorithmic methods to infer the evolutionary trajectories in cancer progression. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 113, p. E4025-E4034, ISSN: 1091-6490, doi: 10.1073/pnas.1520213113
RAMAZZOTTI, DANIELE, CARAVAGNA, GIULIO, Olde Loohuis, L, GRAUDENZI, ALEX, Korsunsky, I, MAURI, GIANCARLO, ANTONIOTTI, MARCO, Mishra, B. (2015). CAPRI: Efficient Inference of Cancer Progression Models from Cross-sectional Data. BIOINFORMATICS, vol. 31, p. 3016-3026, ISSN: 1367-4803, doi: 10.1093/bioinformatics/btv296
GRAUDENZI, ALEX, CARAVAGNA, GIULIO, De Matteis, G, ANTONIOTTI, MARCO (2014). Investigating the relation between stochastic differentiation and homeostasis in intestinal crypts via multiscale modeling. PLOS ONE, vol. 9, e97272, ISSN: 1932-6203, doi: 10.1371/journal.pone.0097272
De Matteis, G, GRAUDENZI, ALEX, ANTONIOTTI, MARCO (2013). A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development. JOURNAL OF MATHEMATICAL BIOLOGY, vol. 66, p. 1409-1462, ISSN: 0303-6812, doi: 10.1007/s00285-012-0539-4
Graudenzi A, Serra R, Villani M, Damiani C, Colacci A, Kauffman S (2011). Dynamical properties of a Boolean model of gene regulatory network with memory. JOURNAL OF COMPUTATIONAL BIOLOGY, vol. 18, p. 1291-1303, ISSN: 1066-5277, doi: 10.1089/cmb.2010.0069
Serra, R, Villani, M, Graudenzi, A, Kauffman, SA (2007). Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. JOURNAL OF THEORETICAL BIOLOGY, vol. 246, p. 449-460, ISSN: 0022-5193, doi: 10.1016/j.jtbi.2007.01.012
TEACHING
Responsible lecturer for 10+ courses in bachelor’s and master’s degrees at the Univ. of Modena and Reggio Emilia and at the Univ. of Milan-Bicocca